Solar panels reduce both global warming and urban heat island
نویسندگان
چکیده
*Correspondence: Valéry Masson, Météo-France/CNRS, Centre National de Recherches Météorologiques/Groupe d’étude de l’atmosphère Météorologique, 42 av Coriolis, 31057 Toulouse, France e-mail: [email protected] The production of solar energy in cities is clearly a way to diminish our dependency to fossil fuels, and is a good way to mitigate global warming by lowering the emission of greenhouse gases. However, what are the impacts of solar panels locally? To evaluate their influence on urban weather, it is necessary to parameterize their effects within the surface schemes that are coupled to atmospheric models. The present paper presents a way to implement solar panels in the Town Energy Balance scheme, taking account of the energy production (for thermal and photovoltaic panels), the impact on the building below and feedback toward the urban micro-climate through radiative and convective fluxes. A scenario of large but realistic deployment of solar panels on the Paris metropolitan area is then simulated. It is shown that solar panels, by shading the roofs, slightly increases the need for domestic heating (3%). In summer, however, the solar panels reduce the energy needed for air-conditioning (by 12%) and also the Urban Heat Island (UHI): 0.2 K by day and up to 0.3 K at night. These impacts are larger than those found in previous works, because of the use of thermal panels (that are more efficient than photovoltaic panels) and the geographical position of Paris, which is relatively far from the sea. This means that it is not influenced by sea breezes, and hence that its UHI is stronger than for a coastal city of the same size. But this also means that local adaptation strategies aiming to decrease the UHI will have more potent effects. In summary, the deployment of solar panels is good both globally, to produce renewable energy (and hence to limit the warming of the climate) and locally, to decrease the UHI, especially in summer, when it can constitute a health threat.
منابع مشابه
Pricing the urban cooling benefits of solar panel deployment in Sydney, Australia
Cities import energy, which in combination with their typically high solar absorption and low moisture availability generates the urban heat island effect (UHI). The UHI, combined with human-induced warming, makes our densely populated cities particularly vulnerable to climate change. We examine the utility of solar photovoltaic (PV) system deployment on urban rooftops to reduce the UHI, and we...
متن کاملتغییر آبوهوا و مخاطرات آبوهوایی شهر تهران
Tehran, in the south of Alborz Mountains, is faced with three types of weather risk, weather risk caused by geography, climatic risks caused by air resistance and weather risk due to global warming. The aim of this study is to examine the three types of risk in Tehran. The method of this study was to evaluate the changes of synoptic factors that affect global warming and urban development. In o...
متن کاملThe urban heat island and its impact on heat waves and human health in Shanghai.
With global warming forecast to continue into the foreseeable future, heat waves are very likely to increase in both frequency and intensity. In urban regions, these future heat waves will be exacerbated by the urban heat island effect, and will have the potential to negatively influence the health and welfare of urban residents. In order to investigate the health effects of the urban heat isla...
متن کاملEffects of white roofs on urban temperature in a global climate model
[1] Increasing the albedo of urban surfaces has received attention as a strategy to mitigate urban heat islands. Here, the effects of globally installing white roofs are assessed using an urban canyon model coupled to a global climate model. Averaged over all urban areas, the annual mean heat island decreased by 33%. Urban daily maximum temperature decreased by 0.6 C and daily minimum temperatu...
متن کاملPhysiological thermal limits predict differential responses of bees to urban heat-island effects.
Changes in community composition are an important, but hard to predict, effect of climate change. Here, we use a wild-bee study system to test the ability of critical thermal maxima (CTmax, a measure of heat tolerance) to predict community responses to urban heat-island effects in Raleigh, NC, USA. Among 15 focal species, CTmax ranged from 44.6 to 51.3°C, and was strongly predictive of populati...
متن کامل